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The hippocampal formation, which includes the hippocampus and 
entorhinal cortex, contains a diverse array of cell types that support 
spatial navigation and memory. A key component of this system is the 
hippocampal place cell1,2, which encodes the animal’s presence at a 
particular spatial location to support navigation and encoding of spatial 
memories. Place cells have been identified in various species, including 
rats1, mice3, bats4 and humans2. Much research has focused on how 
place-cell representations are formed5 and how place cells represent the 
current location without the animal receiving sensory input6. The dis-
covery of entorhinal cortex grid and grid-by-direction cells7–10 offers a 
possible answer to these questions by providing the hippocampus with 
a robust location signal that is encoded using characteristic triangular 
coordinates and updated with the animal’s movements.

In humans, functional magnetic resonance imaging (fMRI) pro-
vides indirect support for the existence of grid cells. fMRI recordings 
from subjects performing a spatial object-placement task has shown 
that hemodynamic activity in a network of regions, including entorhi-
nal cortex, is modulated by the direction of movement11. Notably, this 
directional activity exhibits sixfold rotational symmetry and therefore 
conforms to the 60° periodicity of the firing patterns of grid cells7. We 
used invasive brain recordings to provide direct electrophysiological 
evidence for grid-like representations in navigating primates.

To directly identify human neurons exhibiting grid-like spatial fir-
ing, we recorded single-neuron spiking activity from electrodes that 

were surgically implanted in 14 patients undergoing treatment for drug- 
resistant epilepsy. Owing to the clinical recording equipment used for 
epilepsy monitoring, patients were constrained to their beds and unable 
to physically navigate. Instead, patients performed a virtual navigation 
task on a bedside laptop computer12. The task required that they navigate 
between four objects that were hidden at different locations in a virtual 
environment (Fig. 1a). Unlike some previous studies2,13, this environ-
ment was a large open square, analogous to the sizable arenas often used 
to record grid cells from rodents7. On each trial of the task the participant 
navigated to the location of a randomly selected object. Because objects 
were invisible, the participants were likely to use an allocentric navigation 
strategy based on path integration, which relies on the hippocampal for-
mation14. Participants were successful in learning the locations of the four 
objects, as there was a significant decrease in their mean delivery time 
from 14 to 8 s over the course of each session (P < 0.005, t test; Fig. 1b).

We identified grid-like spatial firing by measuring the firing rate 
of each cell across the virtual environment and testing whether the 
locations where individual cells activated were arranged in a sixfold-
symmetric triangular grid. We measured neuronal firing according 
to the participant’s location by dividing the square environment into 
a 28 × 28 array and computing the mean firing rate of each neuron 
for every virtual position. A number of cells exhibited increased spik-
ing activity at multiple locations. Thus, these cells appeared to be 
fundamentally different from hippocampal place cells, which usually 
activate only at one location5.

Next, we tested whether the multiple locations at which each neu-
ron activated were arranged in the triangular lattice structure that is 
characteristic of grid cells7. This allowed us to distinguish cells with 
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Figure 1  Virtual navigation task. (a) Participant’s view of the experiment. 
(b) Mean duration of successive deliveries in the task, averaged across 
consecutive pairs of deliveries. (c) Mean excess path length. VRU is a 
measure of virtual distance. Error shading denotes 95% confidence intervals.
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grid-like firing from other cells that activate at 
multiple spatial locations, such as multipeaked 
place cells5. To measure the spatial arrange-
ment between the locations represented 
by each cell’s firing, we computed the two- 
dimensional spatial autocorrelation function for each cell’s firing rate 
map. We found that the autocorrelation functions of many cells exhib-
ited multiple distinct peaks that were arranged symmetrically (Fig. 2 
and Supplementary Fig. 1). In many cases, these patterns exhibited 
sixfold (60°) symmetry, indicating that the locations at which these 
cells activated were arranged in a triangular grid, similar to patterns 
observed in rodents7,10.

To identify cells with significant grid-like spatial firing, we com-
puted each cell’s gridness score, which quantifies the 60° periodicity 
in the cell’s spatial autocorrelation function7. The gridness score was 
computed as the mean difference in the autocorrelation at the angles 
at which peaks would be expected in true grid cells (60° and 120°) 
compared with the angles at which troughs would be expected (30°, 
90° and 150°). A neuron was designated as exhibiting grid-like spa-
tial firing if its gridness score was significantly greater than would be 
expected by chance (P < 0.05; Online Methods).

We applied this grid identification procedure to each of the 893 cells 
in our data set, including cells from entorhinal cortex, hippocampus, 
amygdala, parahippocampal gyrus and cingulate cortex (Fig. 3a). 
Many cells exhibited significant grid-like activity. These cells were 
not uniformly distributed across brain areas (P < 0.001, χ2 test). The 
most grid-like cells were found in the entorhinal cortex and cingulate 
cortex, which consisted of 14% and 12% grid-like cells, respectively 
(P values < 0.0005, binomial tests; Fig. 3b). This peak proportion of 
grid-like cells in the entorhinal cortex is generally consistent with 
findings from human and animal studies7,9,11. There were also sig-
nificant numbers of grid-like cells in the hippocampus (8%, P = 0.05). 
There was no significant difference in the prevalence of grid-like cells 
between the right and left hemispheres (P > 0.5, χ2 test).

To verify that the sixfold rotational symmetry of grid-like cells is 
a distinctive feature of human neuronal coding, we tested for cells 
whose spatial firing exhibited four-, eight- or tenfold rotational sym-
metry. The eight- and tenfold symmetry analyses served as statistical 
control analyses, as grids with these angles do not tesselate. These 
analyses did not reveal significant numbers of cells exhibiting any 
symmetry type (P values > 0.01; Fig. 3c) other than the six-way sym-
metry associated with grid cells. In particular, because we did not 
observe significant four-way rotational symmetry, we ruled out the 
possibility that the firing patterns could be driven by the square-like 
arrangement of the four objects.

Prior studies revealed detailed features of grid cells related to 
the spacing and direction-sensitivity of their representations7,10,11. 
Technical reasons precluded us from examining the relation between 
grid spacing and anatomical location of the recording electrode in the 
entorhinal cortex7,9. Comparing anterior and posterior cingulate, we 
found similar numbers of grid-like cells in each area (12% and 11% of 
cells in each respective region) and observed a trend in which cells in 
anterior cingulate had more widely spaced grids than cells in posterior 
cingulate (P = 0.1). Of the cells exhibiting grid-like spatial firing, 18% 
exhibited an additional direction-related modulation (Supplementary 
Table 1), which is consistent with them exhibiting conjunctive grid-
by-direction responses10. We found similar levels of grid-like spatial 
responses after statistically removing direction-related spiking activ-
ity, indicating that our findings of grid-like patterns were not arti-
facts of neural responses to direction or turning. We also conducted 
additional control analyses to confirm that the grid-like cells that we 
observed were stable over time (Supplementary Fig. 2) and not a 
result of multi-peaked place cells (Supplementary Fig. 3).

Figure 2  Examples of grid-like spatial firing.  
(a) The activity of a cell from participant 6’s left 
entorhinal cortex. Left, overhead view of the 
environment, with color representing the firing 
rate (in Hz) at each virtual location. Middle,  
two-dimensional autocorrelation of the cell’s 
activity. Peaks in the autocorrelation function 
determined the spacing and angle of the fitted 
grid, which was then used to plot the estimated 
grid peaks (white ×) across the entire environment. 
Right, cell spike waveform; red denotes mean. 
This cell had a gridness score of 0.51.  
(b) The firing of a cell from participant 10’s  
right entorhinal cortex (gridness score = 0.63).  
(c,d) The firing of a different cell from participant 
10’s right entorhinal cortex in two consecutive 
sessions (gridness scores = 0.60 and 0.74).  
(e) The activity of a different cell from participant 
10’s right entorhinal cortex (gridness score = 0.63).  
(f) The activity of a cell from participant 11’s  
right cingulate cortex (gridness score = 0.67).  
(g) The activity of a cell from participant 7’s  
right cingulate cortex (gridness score = 0.51).  
(h) The activity of a different cell from participant 
7’s right cingulate cortex (gridness score = 0.8). 
(i) The activity of a cell from participant 10’s  
right hippocampus (gridness score = 0.46).  
(j) The activity of a cell from participant 10’s right 
parahippocampal gyrus (gridness score = 0.72).
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In rodents, grid cells are part of a broader neuronal network 
related to spatial processing, including hippocampal place cells1,2. 
We identified place cells that had significantly elevated firing when 
the participant was at a specific virtual location (the cell’s place field; 
Supplementary Fig. 4a–d). We observed significant levels of place 
cells in the hippocampus, parahippocampal gyrus and cingulate cortex 
(P values < 0.01; Supplementary Fig. 4e). Consistent with recordings 
in animals navigating open environments, 80% of place cells did not 
significantly vary (P values > 0.05) their firing rate in the place field 
according to the participant’s heading; the remaining 20% of place 
cells were direction sensitive. We also tested for cells whose activity 
increased when the participant faced a particular virtual direction 
without necessarily encoding specific locations. Significant levels of 
direction-sensitive cells were found only in the hippocampus and 
parahippocampal gyrus (7% of cells in each region; P values < 0.03, 
binomial tests). Owing to the open environment in our task, the par-
ticipant’s direction correlates with viewing particular landmarks at the 
arena’s boundaries. Thus, some apparent direction-sensitive cells may 
relate to viewing particular landmarks2,15. Finally, we tested for cells 
that represent combinations of linear regions of the environment16, 
but the results were inconclusive.

Our results demonstrate the existence of cells with grid-like spa-
tial firing in the human brain and suggest that the human grid-cell 
network includes both entorhinal cortex and cingulate cortex. These 
results extend a growing body of findings in rodents7,10 to humans and 
support the previous fMRI finding11 of grid-like patterns in the human 
entorhinal cortex as well as in the frontal lobe (note that the cingulate 
cortex in which we found grid-like cells was posterior to the prefron-
tal areas reported previously11). Although it is difficult to extrapolate 
accurately from virtual to real-world movement, our estimate of the 
participants’ perceived walking speeds (1.25–2 m s−1, computed from 
the optic flow and their viewpoint height), suggests that individual grid 
cells have spacings between firing fields of at least 1–6 m in the physi-
cal world (extrapolating from the observed virtual grid spacings that 
spanned 27–84% of the environment’s width; Fig. 2).

Although statistically robust, the grid-like cells that we observed 
had noisier firing maps than some grid cells reported in rodents. 
Scientists studying rodent grid cells generally target the dorsome-
dial entorhinal cortex precisely, but there is localization variability in  
epilepsy patients because neurosurgeons implant electrodes accord-
ing to clinical needs12. It is also important to understand whether the 
activities of human grid-like cells are affected by other factors besides 
location, such as eye position9. An additional factor is that humans 
perform our virtual navigation task using only visual information and 
do not receive the proprioceptive feedback that occurs during nor-
mal locomotion and was shown to be important for accurate spatial 
representations in rodents17.

Given the purported role of the entorhinal cortex in spatial and 
nonspatial behaviors18,19, it seems likely that analogous grid-like 
signals also represent various types of human behavioral informa-
tion. Thus, one important area of future research will be character-
izing the information coding of these cells during non-navigational 
behaviors and the relation between grid cells, head-direction cells 
and eye movements9. The entorhinal cortex is the main input to the 
hippocampus, which is critical for episodic memory. Obtaining a bet-
ter understanding of the behavior of widespread entorhinal cortex 
cells7,17,19,20 is likely to shed light on how the human brain encodes 
spatial and nonspatial episodic memories in various contexts.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 3  Population measurements of cells exhibiting significant grid- 
like spatial firing. (a) The distribution of gridness scores from each  
region. Black bars indicate the gridness scores of cells that exhibited 
significant grid-like activity (P < 0.05) and gray bars indicate other cells. 
A, amygdala; CC, cingulate cortex; Cx, frontal cortex; EC, entorhinal 
cortex; H, hippocampus; PHG, parahippocampal gyrus. (b) The proportion 
of significant grid-like cells across regions. Dashed line indicates the type 1  
error rate (5%). Asterisks denote regions in which the observed number 
of cells exceeded the type 1 error rate at P < 0.01 (binomial test). (c) The 
significance of cells exhibiting four-, six-, eight- and tenfold symmetric 
activity (binomial test).
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ONLINE METHODS
Task. During free time between clinical procedures, patients performed a spatial 
learning task on a bedside laptop computer. Our testing protocol was approved by 
the institutional review boards of Thomas Jefferson University and the University 
of California, Los Angeles. In this task, participants learned the locations of four 
visible goal objects and then re-navigated to these locations with the objects 
invisible. At the beginning of each session, each of the four objects were shown 
sequentially on a black screen for 2,000 ms to familiarize the participants with 
their appearance; this was repeated five times. Participants were then placed in the 
virtual environment in which they began navigating, using a joystick to control 
the direction of their movement. In each trial, the participant was instructed to 
drive a virtual bicycle to the location of a randomly selected object. The virtual 
environment consisted of a large open square arena with visual cues that included 
textured walls, a panoramic background image and a floor that gradually transi-
tioned between different colors. The participant’s top speed of movement allowed 
them to travel between opposite walls of the environment in ~3.5 s. We defined 
the width of the environment as 28 virtual reality units (VRUs).

The beginning of each session was a training period to teach the participant 
the objects’ locations. Each training trial began with the participant in the mid-
dle of the environment facing a single wall (north). Then they twice navigated 
to each object: the first time the object was clearly visible, and the second time, 
after being transported back to the center of the environment, the object was 
invisible until they were within 1.6 VRU. The participants visited each of the 
four objects in a random order, and then repeated this process three times for 
a total of 12 training trials. The objects were positioned in a large square-like 
shape (minor variations across sessions) to encourage participants to navigate 
throughout the environment (Supplementary Fig. 5).

After training, participants performed 48 delivery trials in which they were 
asked to navigate directly from one object location to another. The goal object 
remained invisible until the participant was very close to its location. In rare 
cases in which participants became disoriented, the experimenter could inter-
vene to manually make the goal object appear. Participants navigated to each 
fixed goal location 12 times in a random order; there were approximately equal 
numbers of navigations between each pair of objects. We excluded seven sessions 
in which participants had poor navigation performance (defined as having a 
mean excess delivery path length greater than 100 VRU).

Electrophysiology. We recorded single-neuron spiking from 40-µm research 
microwires that augmented the standard clinical macroelectrodes used by clinical 
teams to map epileptiform activity (Supplementary Table 2). Nine participants 
were recorded by I.F. using customized microelectrodes that extended from the 
tip of clinical depth electrodes. Five participants were recorded by A.D.S. using 
electrodes from AdTech that had microwires positioned on either the side or 
tip of each depth electrode. We localized electrodes by performing computed 
tomography scans after implant, aligning the computed tomography images with 
pre-implant MRIs (Supplementary Fig. 6), and then labeling the region of each 
electrode according to anatomical landmarks. We recorded electrical activity at 
28–32 kHz and identified spikes from individual cells using wavelet clustering and 
temporal autocorrelations21. The amplitude of individual spike waveforms aver-
aged 48 µV (Supplementary Table 3). Our accuracy in distinguishing individual 
cells and background noise was largely consistent with recordings from animals, 
as measured using standard methods22: 76% of cells had a false-negative error rate 
less than 10% and 82% had an error rate less than 20%. 78% of cells had a false-
positive error rate less than 10% and 85% had an error rate less than 20%.

Data analysis. Our data analyses probed the relation between each cell’s firing 
rate and the participant’s location in the virtual environment. We excluded cells 
with mean firing rates below 0.5 Hz or above 10 Hz (potential interneurons). 

21.	Quiroga, R.Q. et al. Neural Comput. 16, 1661–1687 (2004).
22.	Hill, D.N., Mehta, S. & Kleinfeld, D. J. Neurosci. 31, 8699–8705 (2011).

We divided each recording session into 50-ms epochs and excluded any time 
intervals when the participant was not moving. Then, we computed the firing rate 
of each neuron across the environment, binning this activity into a 28 × 28 array 
and excluding any locations that were not occupied for at least 100 ms (24% of 
the environment excluded on average). This firing-rate map was then smoothed 
with a 5 × 5 gaussian kernel7.

To characterize the spatial firing of each neuron, we computed the spatial 
autocorrelation, r, of each neuron’s smoothed firing rate7. This function identi-
fies spatial patterns in the cell’s firing by computing the correlation between the 
firing rates at positions (x, y) and (x − τx, y − τy), aggregating across all locations 
(x, y) in the environment
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where τx and τy correspond to spatial lags, λ(x,y) is the firing rate at array location 
(x,y), and n corresponds to the number of valid observations for (x,y), (x–τx, y–τy).  
To minimize potential spurious patterns, we only computed r(τx, τy) for values 
(τx, τy) with at least 20 observations.

Using this autocorrelation function, we then computed each neuron’s gridness 
score10 as the correlation (cor) between the elements in the original autocorrela-
tion matrix r and a series of rotated autocorrelation matrices rθ where θ is the 
angle of rotation. Each cell’s gridness score, g, was thus determined as

g r r r r r r r r= −min cor cor max cor cor( ( , ), ( , )) ( ( , ), ( ,60 120 30 90   
)), ( , )).cor r r150



We computed each cell’s gridness score as the maximum g across radii L ∈ 5…28, 
in each computation including only r(τx, τy) such that 5 2 2≤ + ≤x y L.

We used a permutation procedure to identify putative grid cells by comparing 
each cell’s observed gridness score, g, with the distribution of gridness scores 
expected by chance for that cell, g*. To estimate g* for each cell, we reshuffled the 
original spiking data 1,000 times and, for each shuffle, computed the gridness 
scores exactly as described above. This reshuffling preserved the temporal cor-
relations in the participant’s behavior and neural activity by randomly rotating 
the spiking data with a circular wraparound. We designated a neuron as a puta-
tive grid cell if its true gridness score exceeded 95% of the distribution of g* and 
was positive. To identify cells exhibiting four-, eight- or tenfold symmetric firing 
(Fig. 3c), we followed an analogous procedure but instead used appropriate 
angles when computing g. For example, for fourfold symmetry, we used

g cor r r r r r r= −min max cor cor( ( , )) ( ( , ), ( , )).90 45 135  

To identify place cells, we used t tests to compare the firing rate within 5 VRUs 
of each virtual location with the activity at other locations13. A neuron was 
designated as a place cell if its smallest location-related P value was less than 
observed from reshuffled data at P < 0.05. This procedure used the time-shifting  
reshuffling described above and thus it was unlikely for a significant place  
cell to be caused by only a single traversal of a given location. We identified 
direction-sensitive place cells by using an ANOVA to determine if the cell’s fir-
ing inside the place field significantly varied according to the cardinal direction 
the participant faced.
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